In an ideal power system, the voltage supplied to customer equipment, and the resulting load current are perfect sine waves. In practice, however, conditions are never ideal, so these waveforms are often quite distorted. This deviation from perfect sinusoids is usually expressed in terms of harmonic distortion of the voltage and current waveforms. Power system harmonic distortion is not a new phenomenon - efforts to limit it to acceptable proportions have been a concern of power engineers from the early days of utility systems.
At that time, the distortion was typically caused by the magnetic saturation of transformers or by certain industrial loads, such as arc furnaces or arc welders. The major concerns were the effects of harmonics on synchronous and induction machines, telephone interference, and power capacitor failures. In the past, harmonic problems could often be tolerated because equipment was of conservative design and grounded wye-delta transformer connections were used judiciously. Distortions of the fundamental sinusoid generally occur in multiples of the fundamental frequency. Thus on a 60 Hz power system, a harmonic wave is a sinusoid having a frequency expressed by the following formula, where n is an integer: